Identifiability Conditions and Subspace Clustering in Sparse BSS
نویسندگان
چکیده
We give general identifiability conditions on the source matrix in Blind Signal Separation problem. They refine some previously known ones. We develop a subspace clustering algorithm, which is a generalization of the k-plane clustering algorithm, and is suitable for separation of sparse mixtures with bigger sparsity (i.e. when the number of the sensors is bigger at least by 2 than the number of non-zero elements in most of the columns of the source matrix). We demonstrate our algorithm by examples in the square and underdetermined cases. The latter confirms the new identifiability conditions which require less hyperplanes in the data for full recovery of the sources and the mixing matrix.
منابع مشابه
Geometric Conditions for Subspace-Sparse Recovery
Given a dictionary Π and a signal ξ = Πx generated by a few linearly independent columns of Π, classical sparse recovery theory deals with the problem of uniquely recovering the sparse representation x of ξ. In this work, we consider the more general case where ξ lies in a lowdimensional subspace spanned by a few columns of Π, which are possibly linearly dependent. In this case, x may not uniqu...
متن کاملSubspace Clustering Reloaded: Sparse vs. Dense Representations
State-of-the-art methods for learning unions of subspaces from a collection of data leverage sparsity to form representations of each vector in the dataset with respect to the remaining vectors in the dataset. The resulting sparse representations can be used to form a subspace affinity matrix to cluster the data into their respective subspaces. While sparsity-driven methods for subspace cluster...
متن کاملClustering Consistent Sparse Subspace Clustering
Subspace clustering is the problem of clustering data points into a union of lowdimensional linear/affine subspaces. It is the mathematical abstraction of many important problems in computer vision, image processing and machine learning. A line of recent work [4, 19, 24, 20] provided strong theoretical guarantee for sparse subspace clustering [4], the state-of-the-art algorithm for subspace clu...
متن کاملA Unified Framework for Identifiability Analysis in Bilinear Inverse Problems with Applications to Subspace and Sparsity Models
Bilinear inverse problems (BIPs), the resolution of two vectors given their image under a bilinear mapping, arise in many applications. Without further constraints, BIPs are usually ill-posed. In practice, properties of natural signals are exploited to solve BIPs. For example, subspace constraints or sparsity constraints are imposed to reduce the search space. These approaches have shown some s...
متن کاملGraph Connectivity in Noisy Sparse Subspace Clustering
Subspace clustering is the problem of clustering data points into a union of lowdimensional linear/affine subspaces. It is the mathematical abstraction of many important problems in computer vision, image processing and machine learning. A line of recent work [4, 19, 24, 20] provided strong theoretical guarantee for sparse subspace clustering [4], the state-of-the-art algorithm for subspace clu...
متن کامل